A modal logic for belief functions on MV-algebras

Tommaso Flaminio Lluís Godo Enrico Marchioni

Artificial Intelligence Research Institute
(IIIA - CSIC), Campus UAB,
Spain.

Algebraic Semantics for Uncertainty and Vagueness
Salerno, May 2011
1 Belief functions

2 Logical approach: $FP(\Lambda_k, \mathcal{L})$ and $FP(C\Lambda_k, \mathcal{L})$

3 Semantics for the modal logics $FP(\Lambda_k, \mathcal{L})$ and $FP(C\Lambda_k, \mathcal{L})$
 - Probabilistic models
 - Belief function models
Belief functions on Boolean algebras

Let X be a finite set (the *frame of discernment*) and let $m : \mathcal{P}(X) \rightarrow [0, 1]$ be a map such that

$$\sum_{A \subseteq X} m(A) = 1, \text{ and } m(\emptyset) = 0.$$

The map m is called the *mass assignment*, and the *belief function* over $\mathcal{P}(X)$ defined from m is the map $b_m : \mathcal{P}(X) \rightarrow [0, 1]$ such that for every $A \in \mathcal{P}(X)$

$$b_m(A) = \sum_{B \subseteq A} m(B).$$
Belief functions on Boolean algebras

Let X be a finite set (the *frame of discernment*) and let $m : \mathcal{P}(X) \to [0, 1]$ be a map such that

$$\sum_{A \subseteq X} m(A) = 1, \text{ and } m(\emptyset) = 0.$$

The map m is called the *mass assignment*, and the *belief function* over $\mathcal{P}(X)$ defined from m is the map $b_m : \mathcal{P}(X) \to [0, 1]$ such that for every $A \in \mathcal{P}(X)$

$$b_m(A) = \sum_{B \subseteq A} m(B).$$
Belief functions

A subset $A \subseteq X$ such that $m(A) > 0$ is said to be a *focal element*, and clearly the belief function b_m is defined from the restriction of m over the focal elements.

Notice that every mass assignment m on $\mathcal{P}(X)$ induces a probability measure \mathbb{P}_m on $\mathcal{P}(\mathcal{P}(X))$. Therefore, given a mass assignment m, for every $A \subseteq X$, we can equivalently define

$$b_m(A) = \mathbb{P}_m(\beta_A),$$

where $\beta_A = \{B \mid B \subseteq A\}$, or as membership function on $\mathcal{P}(\mathcal{P}(X))$

$$\beta_A : B \in \mathcal{P}(X) \mapsto \begin{cases} 1 & \text{if } B \subseteq A \\ 0 & \text{otherwise}, \end{cases}$$
A subset $A \subseteq X$ such that $m(A) > 0$ is said to be a *focal element*, and clearly the belief function b_m is defined from the restriction of m over the focal elements.

Notice that every mass assignment m on $\mathcal{P}(X)$ induces a probability measure P_m on $\mathcal{P}(\mathcal{P}(X))$. Therefore, given a mass assignment m, for every $A \subseteq X$, we can equivalently define

$$b_m(A) = P_m(\beta_A),$$

where $\beta_A = \{ B \mid B \subseteq A \}$, or as membership function on $\mathcal{P}(\mathcal{P}(X))$

$$\beta_A : B \in \mathcal{P}(X) \mapsto \begin{cases} 1 & \text{if } B \subseteq A \\ 0 & \text{otherwise,} \end{cases}$$
Belief functions on MV-algebras (1)

In order to generalize belief functions to MV-algebras of functions, Kroupa provides the following approach: Consider a finite set X and let M be the MV-algebra of functions $[0, 1]^X$ (i.e. fuzzy subsets of X). For every $a \in M$, let $\hat{\rho}_a : \mathcal{P}(X) \to [0, 1]$ be defined as follows: for every $B \subseteq X$,

$$\hat{\rho}_a(B) = \min\{a(x) : x \in B\}.$$

The map $\hat{\rho}_a$ generalizes β_A because if a is a Boolean function, then $\hat{\rho}_a = \beta_a$.

Definition

A Kroupa belief function is a map $\hat{b} : [0, 1]^X \to [0, 1]$ such that, for every $a \in [0, 1]^X$,

$$\hat{b}(a) = \hat{s}(\hat{\rho}_a),$$

where $\hat{s} : [0, 1]^{\mathcal{P}(X)} \to [0, 1]$ is a state.
Belief functions on MV-algebras (1)

In order to generalize belief functions to MV-algebras of functions, Kroupa provides the following approach: Consider a finite set X and let M be the MV-algebra of functions $[0, 1]^X$ (i.e. fuzzy subsets of X). For every $a \in M$, let $\hat{\rho}_a : \mathcal{P}(X) \to [0, 1]$ be defined as follows: for every $B \subseteq X$,

$\hat{\rho}_a(B) = \min \{ a(x) : x \in B \}$.

The map $\hat{\rho}_a$ generalizes β_A because if a is a Boolean function, then $\hat{\rho}_a = \beta_a$.

Definition

A Kroupa belief function is a map $\hat{b} : [0, 1]^X \to [0, 1]$ such that, for every $a \in [0, 1]^X$,

$\hat{b}(a) = \hat{s}(\hat{\rho}_a)$,

where $\hat{s} : [0, 1]^{\mathcal{P}(X)} \to [0, 1]$ is a state.
Belief functions on MV-algebras (1)

In order to generalize belief functions to MV-algebras of functions, Kroupa provides the following approach: Consider a finite set X and let M be the MV-algebra of functions $[0, 1]^X$ (i.e. fuzzy subsets of X). For every $a \in M$, let $\hat{\rho}_a : \mathcal{P}(X) \rightarrow [0, 1]$ be defined as follows: for every $B \subseteq X$,

$$\hat{\rho}_a(B) = \min\{a(x) : x \in B\}.$$

The map $\hat{\rho}_a$ generalizes β_A because if a is a Boolean function, then $\hat{\rho}_a = \beta_a$.

Definition

A Kroupa belief function is a map $\hat{b} : [0, 1]^X \rightarrow [0, 1]$ such that, for every $a \in [0, 1]^X$,

$$\hat{b}(a) = \hat{s}(\hat{\rho}_a),$$

where $\hat{s} : [0, 1]^\mathcal{P}(X) \rightarrow [0, 1]$ is a state.
- Since X is finite, one can equivalently define
 \[\hat{b}(a) = \sum_{B \subseteq X} \hat{\rho}_a(B) \cdot \hat{s}(B). \]

- The restriction of \hat{s} to $\mathcal{P}(X)$ (call it \hat{m}) is a classical mass assignment. Therefore a focal element is any $B \subseteq X$ such that $\hat{m}(B) > 0$. That is, focal elements are classical sets.
Since X is finite, one can equivalently define
\[\hat{b}(a) = \sum_{B \subseteq X} \hat{\rho}_a(B) \cdot \hat{s}(B). \]

The restriction of \hat{s} to $\mathcal{P}(X)$ (call it \hat{m}) is a classical mass assignment. Therefore a focal element is any $B \subseteq X$ such that $\hat{m}(B) > 0$. That is, focal elements are classical sets.
Belief functions on MV-algebras (2)

We generalize Kroupa’s belief functions on $[0, 1]^X$ by allowing focal elements to be elements of the same MV-algebra $[0, 1]^X$. What we need to generalize is the map ρ that measures the degree of inclusion between fuzzy sets.

For every $a \in [0, 1]^X$ we define $\rho_a : [0, 1]^X \to [0, 1]$ as follows: for every $b \in [0, 1]^X$,

$$\rho_a(b) = \min \{ b(x) \Rightarrow a(x) : x \in X \}.$$

For every $a \in [0, 1]^X$, the map ρ_a generalizes $\hat{\rho}_a$ because for every crisp subset B of X, $\rho_a(B) = \hat{\rho}_a(B)$.

Definition

A belief function on $[0, 1]^X$ is a map $b : [0, 1]^X \to [0, 1]$ such that, for every $a \in [0, 1]^X$,

$$b(a) = s(\rho_a),$$

where $s : [0, 1]^{[0,1]^X} \to [0, 1]$ is a state.
Belief functions on MV-algebras (2)

We generalize Kroupa’s belief functions on $[0, 1]^X$ by allowing focal elements to be elements of the same MV-algebra $[0, 1]^X$. What we need to generalize is the map ρ that measures the degree of inclusion between fuzzy sets.

For every $a \in [0, 1]^X$ we define $\rho_a : [0, 1]^X \rightarrow [0, 1]$ as follows: for every $b \in [0, 1]^X$,

$$\rho_a(b) = \min \{ b(x) \Rightarrow a(x) : x \in X \}.$$

For every $a \in [0, 1]^X$, the map ρ_a generalizes $\hat{\rho}_a$ because for every crisp subset B of X, $\rho_a(B) = \hat{\rho}_a(B)$.

Definition

A belief function on $[0, 1]^X$ is a map $b : [0, 1]^X \rightarrow [0, 1]$ such that, for every $a \in [0, 1]^X$,

$$b(a) = s(\rho_a),$$

where $s : [0, 1]^{[0,1]^X} \rightarrow [0, 1]$ is a state.
We generalize Kroupa’s belief functions on \([0, 1]^X\) by allowing focal elements to be elements of the same MV-algebra \([0, 1]^X\). What we need to generalize is the map \(\rho\) that measures the degree of inclusion between fuzzy sets.

For every \(a \in [0, 1]^X\) we define \(\rho_a : [0, 1]^X \rightarrow [0, 1]\) as follows: for every \(b \in [0, 1]^X\),

\[
\rho_a(b) = \min\{b(x) \Rightarrow a(x) : x \in X\}.
\]

For every \(a \in [0, 1]^X\), the map \(\rho_a\) generalizes \(\hat{\rho}_a\) because for every crisp subset \(B\) of \(X\), \(\rho_a(B) = \hat{\rho}_a(B)\).

Definition

A *belief function* on \([0, 1]^X\) is a map \(b : [0, 1]^X \rightarrow [0, 1]\) such that, for every \(a \in [0, 1]^X\),

\[
b(a) = s(\rho_a),
\]

where \(s : [0, 1]^{[0, 1]^X} \rightarrow [0, 1]\) is a state.
Kroupa approach vs. Our approach

<table>
<thead>
<tr>
<th>Belief functions</th>
<th>Kroupa approach</th>
<th>Our approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belief functions</td>
<td>$\hat{\rho}_a$ measures the degree of inclusion of a crisp set B in the fuzzy set a</td>
<td>ρ_a measures the degree of inclusion of a fuzzy set b in the fuzzy set a</td>
</tr>
<tr>
<td>Crisp evidence: B is a crisp set</td>
<td>$\hat{b}(a) = \hat{s}(\hat{\rho}_a)$ and $\hat{s} : [0, 1]^{\mathcal{P}(X)} \to [0, 1]$</td>
<td>Fuzzy evidence: b is a fuzzy set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b(a) = s(\rho_a)$ and $s : [0, 1]^{[0, 1]^X} \to [0, 1]$</td>
</tr>
</tbody>
</table>
Logical approach: $FP(\Lambda_k,Ł)$ and $FP(C\Lambda_k,Ł)$

The above definitions suggest that a logic for belief functions on MV-events can be introduced by expanding the language of Łukasiewicz logic by two unary modalities:

- A modality \Box whose interpretation is intended to capture the behavior of the measure of inclusion $\hat{\rho}$, or ρ, we are dealing with.
- A modality Pr that respects the axioms of states on MV-algebras.

Finally we interpret the belief of φ by $Pr(\Box \varphi)$ (a similar approach was used by Godo, Hájek and Esteva to deal with belief functions over Boolean events).
Consider the k-valued Łukasiewicz logic expanded with rational truth constants $Ł^c_k$.

A $Ł^c_k$-Kripke model is a triple $⟨W, e, R⟩$ where:

- W is a non-empty set of possible worlds,
- for every possible world w, $e(·, w)$ is a truth-evaluation of $Ł^c_k$ into S_k,
- $R : W × W → S_k$ is an accessibility relation.

We denote by Fr the class of $Ł^c_k$-Kripke models.

If the accessibility relation R is crisp (i.e. $R : W × W → \{0, 1\}$), then the model is called a classical Kripke model, and we will denote by CFr the class of all classical Kripke models.
Consider the k-valued Łukasiewicz logic expanded with rational truth constants $Ł^c_k$.

A $Ł^c_k$-Kripke model is a triple $\langle W, e, R \rangle$ where:

- W is a non-empty set of possible worlds,
- for every possible world w, $e(\cdot, w)$ is a truth-evaluation of $Ł^c_k$ into S_k,
- $R : W \times W \rightarrow S_k$ is an accessibility relation.

We denote by Fr the class of $Ł^c_k$-Kripke models.

If the accessibility relation R is crisp (i.e. $R : W \times W \rightarrow \{0, 1\}$), then the model is called a classical Kripke model, and we will denote by CFr the class of all classical Kripke models.
Consider the k-valued Łukasiewicz logic expanded with rational truth constants $Ł^c_k$.

A $Ł^c_k$-Kripke model is a triple $⟨W, e, R⟩$ where:

- W is a non-empty set of possible worlds,
- for every possible world w, $e(·, w)$ is a truth-evaluation of $Ł^c_k$ into S_k,
- $R : W × W → S_k$ is an accessibility relation.

We denote by Fr the class of $Ł^c_k$-Kripke models.

If the accessibility relation R is crisp (i.e. $R : W × W → \{0, 1\}$), then the model is called a classical Kripke model, and we will denote by CFr the class of all classical Kripke models.
The modal logics Λ_k and $C\Lambda_k$

Bou, Esteva, Godo and Rodriguez introduce the logics $\Lambda(Fr,\mathcal{L}_k^c)$ and $\Lambda(CFr,\mathcal{L}_k^c)$ by enlarging the language of \mathcal{L}_k^c by a unary modality \Box, and defining well formed formulas as usual. Now we are going to consider the two fragments Λ_k and $C\Lambda_k$ of $\Lambda(Fr,\mathcal{L}_k^c)$ and $\Lambda(CFr,\mathcal{L}_k^c)$, whose well formed formulas have unnested occurrences of \Box, so to keep the modal logic to be locally finite.

Given a formula ϕ, and a (classical, \mathcal{L}_k^c)-Kripke model $K = \langle W, e, R \rangle$, for every $w \in W$, we define the truth value of ϕ in K at w as follows:

- If ϕ is a formula of \mathcal{L}_k^c, then $\|\phi\|_w = e(\phi, w)$,
- If $\phi = \Box \psi$, then $\Box \psi \|_w = \bigwedge_{w' \in W} (R(w, w') \Rightarrow \|\psi\|_{w'})$,
- If ϕ is a compound formula, its truth value is computed the truth functionality.
The modal logics Λ_k and $C\Lambda_k$

Bou, Esteva, Godo and Rodriguez introduce the logics $\Lambda(Fr,Ł^c_k)$ and $\Lambda(CFr,Ł^c_k)$ by enlarging the language of $Ł^c_k$ by a unary modality \Box, and defining well formed formulas as usual. Now we are going to consider the two fragments Λ_k and $C\Lambda_k$ of $\Lambda(Fr,Ł^c_k)$ and $\Lambda(CFr,Ł^c_k)$, whose well formed formulas have unnested occurrences of \Box, so to keep the modal logic to be locally finite.

Given a formula ϕ, and a (classical, $Ł^c_k$)-Kripke model $K = \langle W, e, R \rangle$, for every $w \in W$, we define the truth value of ϕ in K at w as follows:

- If ϕ is a formula of $Ł^c_k$, then $\|\phi\|_w = e(\phi, w)$,
- If $\phi = \Box \psi$, then $\|\Box \psi\|_w = \bigwedge_{w' \in W} (R(w, w') \Rightarrow \|\psi\|_{w'})$,
- If ϕ is a compound formula, its truth value is computed the truth functionality.
Logical approach: \(FP(\Lambda_k,\mathcal{L}) \) and \(FP(C\Lambda_k,\mathcal{L}) \)

The modal logics \(\Lambda_k \) and \(C\Lambda_k \)

Bou, Esteva, Godo and Rodriguez introduce the logics \(\Lambda(Fr,\mathcal{L}_c^k) \) and \(\Lambda(CFr,\mathcal{L}_c^k) \) by enlarging the language of \(\mathcal{L}_c^k \) by a unary modality \(\Box \), and defining well formed formulas as usual. Now we are going to consider the two fragments \(\Lambda_k \) and \(C\Lambda_k \) of \(\Lambda(Fr,\mathcal{L}_c^k) \) and \(\Lambda(CFr,\mathcal{L}_c^k) \), whose well formed formulas have unnested occurrences of \(\Box \), so to keep the modal logic to be locally finite.

Given a formula \(\phi \), and a (classical, \(\mathcal{L}_c^k \))-Kripke model \(K = \langle W, e, R \rangle \), for every \(w \in W \), we define the truth value of \(\phi \) in \(K \) at \(w \) as follows:

- If \(\phi \) is a formula of \(\mathcal{L}_c^k \), then \(\| \phi \|_w = e(\phi, w) \),
- If \(\phi = \Box \psi \), then \(\| \Box \psi \|_w = \bigwedge_{w' \in W} (R(w, w') \Rightarrow \| \psi \|_{w'}) \),
- If \(\phi \) is a compound formula, its truth value is computed the truth functionality.
Then the logic Λ_k has the following axioms:

1. all the axioms for \mathcal{L}_k^c;
2. $\square 1$;
3. $(\square \varphi \land \square \psi) \rightarrow \square (\varphi \land \psi)$;
4. $\square (\overline{r} \rightarrow \varphi) \leftrightarrow (\overline{r} \rightarrow \square \varphi)$.

The rules of Λ_k are Modus Ponens, $\{\varphi, \varphi \rightarrow \psi\} \vdash \psi$; and Monotonicity, $\varphi \rightarrow \psi \vdash \square \varphi \rightarrow \square \psi$.

The logic $C\Lambda_k$ is Λ_k plus the axiom $\{\square (\varphi \rightarrow \psi) \rightarrow (\square \varphi \rightarrow \square \psi)\}$.

- The logic Λ_k is sound and complete w.r.t. Fr.
- The logic $C\Lambda_k$ is sound and complete w.r.t. CFr.

T. Flaminio, L. Godo, E. Marchioni (IIIA)
ASVU, Salerno 2011
Then the logic Λ_k has the following axioms:

1. all the axioms for \mathcal{L}_k^c;

2. $\Box 1$;

3. $(\Box \varphi \land \Box \psi) \rightarrow \Box (\varphi \land \psi)$;

4. $\Box (\overline{\varphi} \rightarrow \varphi) \leftrightarrow (\overline{\varphi} \rightarrow \Box \varphi)$.

The rules of Λ_k are Modus Ponens, $\{\varphi, \varphi \rightarrow \psi\} \vdash \psi$; and Monotonicity, $\varphi \rightarrow \psi \vdash \Box \varphi \rightarrow \Box \psi$.

The logic $C\Lambda_k$ is Λ_k plus the axiom $\{\Box (\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)\}$.

- The logic Λ_k is sound and complete w.r.t. Fr.
- The logic $C\Lambda_k$ is sound and complete w.r.t. CFr.
Then the logic Λ_k has the following axioms:

1. all the axioms for \mathcal{L}_k^c;
2. $\Box 1$;
3. $(\Box \varphi \land \Box \psi) \rightarrow \Box (\varphi \land \psi)$;
4. $\Box (\Box \varphi \rightarrow \varphi) \iff (\varphi \rightarrow \Box \varphi)$.

The rules of Λ_k are Modus Ponens, $\{\varphi, \varphi \rightarrow \psi\} \vdash \psi$; and Monotonicity, $\varphi \rightarrow \psi \vdash \Box \varphi \rightarrow \Box \psi$.

The logic $C\Lambda_k$ is Λ_k plus the axiom $\{\Box (\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)\}$.

- The logic Λ_k is sound and complete w.r.t. Fr.
- The logic $C\Lambda_k$ is sound and complete w.r.t. CFr.
Probabilistic logics over Λ_k, and $C\Lambda_k$

The logics $FP(\Lambda_k, \mathcal{L})$ and $FP(C\Lambda_k, \mathcal{L})$ have a language obtained by expanding the language of Λ_k by a unary modality σ. Formulas are those of Λ_k, plus the class \mathcal{F}^σ that includes \mathcal{F}^\Box and satisfies the following: for every $\psi \in \mathcal{F}^\Box$, $\sigma\psi \in \mathcal{F}^\sigma$, and \mathcal{F}^σ is closed under the connectives of \mathcal{L}.

Axioms and rules of $FP(\Lambda_k, \mathcal{L})$ are as follows:

1. All the axioms and rules of Λ_k restricted to the formulas in \mathcal{F}^\Box;
2. The following axioms for σ (cf. [FG07]):
 1. $\sigma \top$.
 2. $\sigma(\neg \varphi) \leftrightarrow \neg \sigma(\varphi)$.
 3. $\sigma(\varphi \oplus \psi) \leftrightarrow [(\sigma(\varphi) \rightarrow \sigma(\psi \& \varphi)) \rightarrow \sigma(\psi)]$.
3. The rule of Necessitation, $\varphi \vdash \sigma(\varphi)$.

Axioms and rules of $FP(C\Lambda_k, \mathcal{L})$ are as above, replacing the axioms of Λ_k for the formulas in \mathcal{F}^\Box, with those of $C\Lambda_k$.
Probabilistic logics over Λ_k, and $C\Lambda_k$

The logics $FP(\Lambda_k, \Ł)$ and $FP(C\Lambda_k, \Ł)$ have a language obtained by expanding the language of Λ_k by a unary modality σ. Formulas are those of Λ_k, plus the class \mathcal{F}^{σ} that includes \mathcal{F}^{\Box} and satisfies the following: for every $\psi \in \mathcal{F}^{\Box}$, $\sigma\psi \in \mathcal{F}^{\sigma}$, and \mathcal{F}^{σ} is closed under the connectives of $\Ł$.

Axioms and rules of $FP(\Lambda_k, \Ł)$ are as follows:

1. All the axioms and rules of Λ_k restricted to the formulas in \mathcal{F}^{\Box};
2. The following axioms for σ (cf. [FG07]):
 1. $\sigma \top$.
 2. $\sigma(\neg \varphi) \leftrightarrow \neg \sigma(\varphi)$.
 3. $\sigma(\varphi \oplus \psi) \leftrightarrow [(\sigma(\varphi) \rightarrow \sigma(\psi \& \varphi)) \rightarrow \sigma(\psi)]$.
3. The rule of Necessitation, $\varphi \vdash \sigma(\varphi)$.

Axioms and rules of $FP(C\Lambda_k, \Ł)$ are as above, replacing the axioms of Λ_k for the formulas in \mathcal{F}^{\Box}, with those of $C\Lambda_k$.
Probabilistic logics over Λ_k, and $C\Lambda_k$

The logics $FP(\Lambda_k, \mathcal{L})$ and $FP(C\Lambda_k, \mathcal{L})$ have a language obtained by expanding the language of Λ_k by a unary modality σ. Formulas are those of Λ_k, plus the class \mathcal{F}^σ that includes \mathcal{F}^\Box and satisfies the following: for every $\psi \in \mathcal{F}^\Box$, $\sigma\psi \in \mathcal{F}^\sigma$, and \mathcal{F}^σ is closed under the connectives of \mathcal{L}.

Axioms and rules of $FP(\Lambda_k, \mathcal{L})$ are as follows:

1. All the axioms and rules of Λ_k restricted to the formulas in \mathcal{F}^\Box;
2. The following axioms for σ (cf. [FG07]):
 1. $\sigma \top$.
 2. $\sigma(\neg \varphi) \leftrightarrow \neg \sigma(\varphi)$.
 3. $\sigma(\varphi \oplus \psi) \leftrightarrow [(\sigma(\varphi) \rightarrow \sigma(\psi & \varphi)) \rightarrow \sigma(\psi)]$.
3. The rule of Necessitation, $\varphi \vdash \sigma(\varphi)$.

Axioms and rules of $FP(C\Lambda_k, \mathcal{L})$ are as above, replacing the axioms of Λ_k for the formulas in \mathcal{F}^\Box, with those of $C\Lambda_k$.
Outline

1. Belief functions

2. Logical approach: $FP(\Lambda_k, \mathcal{L})$ and $FP(C\Lambda_k, \mathcal{L})$

3. Semantics for the modal logics $FP(\Lambda_k, \mathcal{L})$ and $FP(C\Lambda_k, \mathcal{L})$
 - Probabilistic models
 - Belief function models
Probabilistic models

The first kind of models for $FP(\Lambda_k, \mathcal{L})$ and $FP(C\Lambda_k, \mathcal{L})$ are defined as follows:

Definition

A probabilistic Kripke model is a system

$$M = \langle W, e, R, s \rangle$$

such that its reduct $\langle W, e, R \rangle$ is a \mathcal{L}^c_k-Kripke model, and $s : \mathcal{F}^\Box_M \to [0, 1]$ is a state, where $\mathcal{F}^\Box_M = \{\|\varphi\|_M : w \in W \mapsto \|\varphi\|_{M, w} : \varphi \in \mathcal{F}^\Box\}$.

A probabilistic \mathcal{L}^c_k-Kripke model such that its reduct $\langle W, e, R \rangle$ is a classical Kripke model, is called a probabilistic classical Kripke frame.
Let $M = \langle W, e, R, s \rangle$ be a probabilistic \mathcal{L}_k^c (classical) Kripke model. For every $\Phi \in \mathfrak{F}^\sigma$, and for every $w \in W$, we define the truth value of Φ in M at w inductively as follows:

- If $\Phi \in \mathfrak{F}^\Box$, then its truth value $\|\Phi\|_{M,w}$ is evaluated in the fragment $\langle W, e, R \rangle$ as we defined in the previous section.
- If $\Phi = \sigma \psi$, then $\|\sigma \psi\|_{M,w} = s(\|\psi\|_M)$.
- If Φ is a compound formula, its truth values is computed by truth functionality.

Theorem (Probabilistic completeness)

1. The logic $FP(\Lambda_k, \mathcal{L})$ is sound and finitely strong complete with respect to the class of probabilistic \mathcal{L}_k^c-Kripke models.
2. The logic $FP(\mathcal{C} \Lambda_k, \mathcal{L})$ is sound and finitely strong complete with respect to the class of probabilistic classical Kripke models.
Outline

1. Belief functions

2. Logical approach: $FP(\Lambda_k, \mathcal{L})$ and $FP(C\Lambda_k, \mathcal{L})$

3. Semantics for the modal logics $FP(\Lambda_k, \mathcal{L})$ and $FP(C\Lambda_k, \mathcal{L})$
 - Probabilistic models
 - Belief function models
Belief function models

Definition

The set of belief formulas (or B-formulas) is the subset of \mathcal{F}^σ defined as follows: atomic belief formulas are those in the form $\sigma \Box \psi$ (where of course ψ is a formula in \mathcal{L}^c_k), that will be henceforth denoted by $B(\psi)$; compound belief formulas are defined from atomic ones using the connectives of \mathcal{L}. The set of belief formulas will be denoted by \mathcal{F}^B.

Let now Ω be the set of all the evaluations of \mathcal{L}^c_k, over the (finite) set of propositional variables V, i.e. $\Omega = (S_k)^V$. For every formula φ without occurrences of modalities (i.e. φ is a formula in the language of \mathcal{L}^c_k), let $\|\varphi\|_\Omega : \Omega \rightarrow S_k$ be defined as $\|\varphi\|_\Omega(w) = w(\varphi)$.
Definition

A (Kroupa) belief function model is a pair $N = (\Omega, m)$ where Ω is as above, and $m : (S_k)^{\Omega} \rightarrow [0, 1]$ ($m : \{\{0, 1\}\}^{\Omega} \rightarrow [0, 1]$) satisfies $\sum_{f \in (S_k)^{\Omega}} m(f) = 1$, and $m(\emptyset) = 0$. Then the corresponding belief function bel_m is defined as usual: for every formula φ,

$$bel_m(\varphi) = \sum_{g \in (S_k)^{\Omega}} \rho_{\|\varphi\|_{\Omega}}(g) \cdot m(g).$$

For every belief formula Φ, and every belief function model $N = (\Omega, m)$, Φ is evaluated into N as follows:

- If $\Phi = B(\varphi)$ is atomic, then $\|B(\varphi)\|_N = bel_m(\varphi)$.
- If Φ is compound, then $\|\Phi\|_N$ is computed by truth functionality as usual.
Let Φ be a belief formula. Then for every (Kroupa) belief function model $D = (\Omega, m)$ there exists a (classical) probabilistic Kripke model $K = (W, e, R, s)$ such that $\Phi, \|\Phi\|_M = \|\Phi\|_D$, and vice-versa.

Hence, if we limit to belief formulas, and belief theories, then $FP(\Lambda_k, \mathcal{L})$ is sound and finitely complete with respect to the class of belief models. An analogous result holds for $FP(C\Lambda_k, \mathcal{L})$ with respect to Kroupa belief models.
Theorem

Let Φ be a belief formula. Then for every (Kroupa) belief function model $D = (\Omega, m)$ there exists a (classical) probabilistic Kripke model $K = (W, e, R, s)$ such that $\Phi, \parallel \Phi \parallel_M = \parallel \Phi \parallel_D$, and vice-versa.

Hence, if we limit to belief formulas, and belief theories, then $FP(\Lambda_k, \mathcal{L})$ is sound and finitely complete with respect to the class of belief models. An analogous result holds for $FP(C\Lambda_k, \mathcal{L})$ with respect to Kroupa belief models.
