Representation of Partial Traces

TACL 2015, Ischia, Italy

Marc Bagnol — University of Ottawa
Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object 1.
Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object 1.

Symmetric: moreover has natural isomorphisms $\sigma_{A,B}: A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B}$.
Monoidal: a category with an associative bifunctor \otimes and a unit object 1.

Symmetric: moreover has natural isomorphisms $\sigma_{A,B} : A \otimes B \to B \otimes A$, such that $\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f : A \otimes U \to B \otimes U$
Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object $\mathbf{1}$.

Symmetric: moreover has natural isomorphisms $\sigma_{A,B} : A \otimes B \to B \otimes A$, such that $\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f : A \otimes U \to B \otimes U$ into $\text{Tr}^U[f] : A \to B$.

Understood as a feedback along U.

Ubiquitous structure in mathematics: linear algebra, topology, knot theory, ...
Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object 1.

Symmetric: moreover has natural isomorphisms $\sigma_{A,B} : A \otimes B \to B \otimes A$, such that $\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f : A \otimes U \to B \otimes U$ into $\text{Tr}^U[f] : A \to B$.

![Diagram](image-url)
Monoidal: a category with an associative bifunctor \otimes and a unit object 1.

Symmetric: moreover has natural isomorphisms $\sigma_{A,B} : A \otimes B \to B \otimes A$, such that $\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f : A \otimes U \to B \otimes U$ into $\text{Tr}^U[f] : A \to B$.

Understood as a feedback along U.
Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \(\otimes \) and a unit object \(1 \).

Symmetric: moreover has natural isomorphisms \(\sigma_{A,B} : A \otimes B \to B \otimes A \), such that \(\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B} \).

Trace (A. Joyal, R. Street, D. Verity): operation turning \(f : A \otimes U \to B \otimes U \) into \(\text{Tr}^U[f] : A \to B \).

Understood as a *feedback along* \(U \).
Ubiquitous structure in mathematics: linear algebra, topology, knot theory, proof theory…
Partial traces

P. Scott & E. Haghverdi: axiomatization of partially-defined trace,
Partial traces

P. Scott & E. Haghverdi: axiomatization of partially-defined trace, capturing the idea of (partially defined) categorical feedback.
P. Scott & E. Haghverdi: axiomatization of partially-defined trace, capturing the idea of (partially defined) categorical feedback.

One example of partial traces axiom: sliding
P. Scott & E. Haghverdi: axiomatization of partially-defined trace, capturing the idea of (partially defined) categorical feedback.

One example of partial traces axiom: sliding

\[\text{Tr}^U [f (\text{Id}_A \otimes g)] \iff \text{Tr}^{U'} [(\text{Id}_B \otimes g)f] \]
Partial traces

P. Scott & E. Haghverdi: axiomatization of partially-defined trace, capturing the idea of (partially defined) categorical feedback.

One example of partial traces axiom: sliding

\[
\text{Tr}^U \left[f(\text{Id}_A \otimes g) \right] \Leftrightarrow \text{Tr}^{U'} \left[(\text{Id}_B \otimes g)f \right]
\]
A straightforward way to build partial traces:
Partial traces and sub-categories

A straightforward way to build partial traces:

○ Consider a totally traced category \mathcal{D}.

O. Malherbe, P. Scott, P. Selinger: representation theorem.
A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f : A \otimes U \to B \otimes U$ is in \mathcal{C},

Definition

Define a partial trace $\hat{\text{Tr}}_U$ on \mathcal{C} as:

- If $\text{Tr}_U[f] \in \mathcal{C}$, then $\hat{\text{Tr}}_U[f] = \text{Tr}_U[f]$, undefined otherwise.
A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f : A \otimes U \to B \otimes U$ is in \mathcal{C}, it always has a trace $\text{Tr}^U[f]$ in \mathcal{D}.
Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f : A \otimes U \rightarrow B \otimes U$ is in \mathcal{C}, it always has a trace $\text{Tr}^U[f]$ in \mathcal{D}. (\text{Tr}^U[f] \text{ may or may not end up in } \mathcal{C})
A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f : A \otimes U \to B \otimes U$ is in \mathcal{C}, it always has a trace $\text{Tr}^U[f]$ in \mathcal{D}. ($\text{Tr}^U[f]$ may or may not end up in \mathcal{C})

Define a partial trace $\hat{\text{Tr}}$ on \mathcal{C} as:
A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f : A \otimes U \to B \otimes U$ is in \mathcal{C}, it always has a trace $\text{Tr}^U[f]$ in \mathcal{D}.
 (If $\text{Tr}^U[f]$ may or may not end up in \mathcal{C})

Define a partial trace $\hat{\text{Tr}}$ on \mathcal{C} as:

$$\text{if } \text{Tr}^U[f] \in \mathcal{C}$$
A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f: A \otimes U \rightarrow B \otimes U$ is in \mathcal{C}, it always has a trace $\text{Tr}^U[f]$ in \mathcal{D}. ($\text{Tr}^U[f]$ may or may not end up in \mathcal{C})

Define a partial trace $\hat{\text{Tr}}$ on \mathcal{C} as:

$$
\text{if } \text{Tr}^U[f] \in \mathcal{C} \text{ then } \hat{\text{Tr}}^U[f] = \text{Tr}^U[f]
$$
Partial traces and sub-categories

A straightforward way to build partial traces:

○ Consider a totally traced category \mathcal{D}.

○ Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.

○ If $f : A \otimes U \to B \otimes U$ is in \mathcal{C}, it always has a trace $\text{Tr}^U[f]$ in \mathcal{D}. ($\text{Tr}^U[f]$ may or may not end up in \mathcal{C})

Define a partial trace $\hat{\text{Tr}}$ on \mathcal{C} as:

$$\text{if } \text{Tr}^U[f] \in \mathcal{C} \text{ then } \hat{\text{Tr}}^U[f] = \text{Tr}^U[f], \text{ undefined otherwise}$$
Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f : A \otimes U \to B \otimes U$ is in \mathcal{C}, it always has a trace $\text{Tr}^U[f]$ in \mathcal{D}. (Tr$^U[f]$ may or may not end up in \mathcal{C})

Define a partial trace $\hat{\text{Tr}}$ on \mathcal{C} as:

$$\text{if } \text{Tr}^U[f] \in \mathcal{C} \text{ then } \hat{\text{Tr}}^U[f] = \text{Tr}^U[f], \text{ undefined otherwise}$$

Does any partial trace arise this way?
A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f : A \otimes U \to B \otimes U$ is in \mathcal{C}, it always has a trace $\text{Tr}^U[f]$ in \mathcal{D}.
 ($\text{Tr}^U[f]$ may or may not end up in \mathcal{C})

Define a partial trace $\widehat{\text{Tr}}$ on \mathcal{C} as:

\[
\text{if } \text{Tr}^U[f] \in \mathcal{C} \text{ then } \widehat{\text{Tr}}^U[f] = \text{Tr}^U[f], \text{ undefined otherwise}
\]

Does any partial trace arise this way?

O. Malherbe, P. Scott, P. Selinger: representation theorem.
The representation theorem

More precisely: any partially traced category embeds in a totally traced one.
The representation theorem

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

\[C \xrightarrow{E_C} T(C) \]

(where \(C \) is partially traced, \(T(C) \) is the totally traced category in which it embeds, \(D \) is any other totally traced category, with \(F \) a traced functor from \(C \) to \(D \))
The representation theorem

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

\[C \xrightarrow{F} D \]

(where \(C \) is partially traced, \(T(C) \) is the totally traced category in which it embeds, \(D \) is any other totally traced category, with \(F \) a traced functor from \(C \) to \(D \))
More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

\[
\begin{array}{c}
C \\ \downarrow E_C \\
\downarrow F \\
T(C) \\ \downarrow \\
D
\end{array}
\]

(where \(C \) is partially traced, \(T(C) \) is the totally traced category in which it embeds, \(D \) is any other totally traced category, with \(F \) a traced functor from \(C \) to \(D \))
The representation theorem

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

\[C \xrightarrow{E_C} T(C) \xrightarrow{G} D \]

(where \(C \) is partially traced, \(T(C) \) is the totally traced category in which it embeds, \(D \) is any other totally traced category, with \(F \) a traced functor from \(C \) to \(D \))
The representation theorem

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

\[
\begin{array}{ccc}
C & \xrightarrow{E_C} & T(C) \\
\downarrow{F} & & \downarrow{G} \\
D & \xrightarrow{G} & D
\end{array}
\]

(where \(C\) is partially traced, \(T(C)\) is the totally traced category in which it embeds, \(D\) is any other totally traced category, with \(F\) a traced functor from \(C\) to \(D\))

Original proof: intermediate partial version of the \(\text{Int}(\cdot)\) construction and “paracategories”.

The representation theorem

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

\[
\begin{array}{ccc}
C & \xrightarrow{E_C} & T(C) \\
\downarrow F & & \downarrow G \\
D & \downarrow &
\end{array}
\]

(where \(C \) is partially traced, \(T(C) \) is the totally traced category in which it embeds, \(D \) is any other totally traced category, with \(F \) a traced functor from \(C \) to \(D \))

Original proof: intermediate partial version of the \(\text{Int}(\cdot) \) construction and "paracategories".

Contribution: a more direct and simplified proof.
The proof (I): the dialect construction

A generic construction $D(C)$ on any monoidal category C.
The proof (I): the dialect construction

A generic construction $D(C)$ on any monoidal category C.

Basic idea: add a “state space” to morphisms.
The proof (I): the dialect construction

A generic construction \(\mathbf{D}(\mathcal{C}) \) on any monoidal category \(\mathcal{C} \).

Basic idea: add a “state space” to morphisms.

A morphism from \(A \) to \(B \) in \(\mathbf{D}(\mathcal{C}) \) is a pair \((f, U) \) with
The proof (I): the dialect construction

A generic construction $D(C)$ on any monoidal category C.

Basic idea: add a “state space” to morphisms.

A morphism from A to B in $D(C)$ is a pair (f, U) with
- U an object of C.
A generic construction $\mathbf{D}(\mathcal{C})$ on any monoidal category \mathcal{C}.

Basic idea: add a “state space” to morphisms.

A morphism from A to B in $\mathbf{D}(\mathcal{C})$ is a pair (f, U) with

- U an object of \mathcal{C}.
- $f : A \otimes U \to B \otimes U$ a morphism of \mathcal{C}.
A generic construction $D(C)$ on any monoidal category C.

Basic idea: add a “state space” to morphisms.

A morphism from A to B in $D(C)$ is a pair (f, U) with

- U an object of C.
- $f : A \otimes U \to B \otimes U$ a morphism of C.

When composing (f, U) and (g, V) the state spaces do not interact.
The proof (II): hiding and congruences

Hiding: given a partially traced C we can look at $D(C)$ and define a *hiding* operation
Hiding: given a partially traced C we can look at $D(C)$ and define a hiding operation turning $(f, V) : A \otimes U \to B \otimes U$ into

$$H_U[f, V] = (f, U \otimes V) : A \to B$$

H behaves a lot like a (total) trace.

Congruences: consider the equivalence relation on morphisms generated by some required equations, including $$(f, U \otimes V) \approx (\text{Tr}_V[f], U)$$ when $\text{Tr}_V[f]$ is defined. Then we can set $T(C) = D(C)/\approx$ in which H induces a total trace, encompassing the original partial trace of C.
The proof (II): hiding and congruences

Hiding: given a partially traced C we can look at $\mathbf{D}(C)$ and define a *hiding* operation turning $(f, V) : A \otimes U \rightarrow B \otimes U$ into

$$H^U[f, V] = (f, U \otimes V) : A \rightarrow B$$
The proof (II): hiding and congruences

Hiding: Given a partially traced C we can look at $D(C)$ and define a *hiding* operation turning $(f, V) : A \otimes U \to B \otimes U$ into

$$H^U[f, V] = (f, U \otimes V) : A \to B$$

$H[\cdot]$ behaves a lot like a (total) trace.
The proof (II): hiding and congruences

Hiding: given a partially traced C we can look at $D(C)$ and define a *hiding* operation turning $(f, V) : A \otimes U \to B \otimes U$ into

$$H^U[f, V] = (f, U \otimes V) : A \to B$$

$H[\cdot]$ behaves a lot like a (total) trace.

Congruences: consider the equivalence relation on morphisms generated by some required equations, including
The proof (II): hiding and congruences

Hiding: given a partially traced C we can look at $D(C)$ and define a *hiding* operation turning $(f, V) : A \otimes U \rightarrow B \otimes U$ into

$$H^U[f, V] = (f, U \otimes V) : A \rightarrow B$$

$H[\cdot]$ behaves a lot like a (total) trace.

Congruences: consider the equivalence relation on morphisms generated by some required equations, including

$$(f, U \otimes V) \approx (Tr^V[f], U)$$ when $Tr^V[f]$ is defined.
Hiding: given a partially traced C we can look at $D(C)$ and define a hiding operation turning $(f, V) : A \otimes U \to B \otimes U$ into

$$H^U[f, V] = (f, U \otimes V) : A \to B$$

$H[\cdot]$ behaves a lot like a (total) trace.

Congruences: consider the equivalence relation on morphisms generated by some required equations, including

$$(f, U \otimes V) \simeq (\text{Tr}^V[f], U)$$

when $\text{Tr}^V[f]$ is defined.

Then we can set $T(C) = D(C) / \simeq$
The proof (II): hiding and congruences

Hiding: given a partially traced C we can look at $D(C)$ and define a hiding operation turning $(f, V) : A \otimes U \to B \otimes U$ into

$$H^U[f, V] = (f, U \otimes V) : A \to B$$

$H[\cdot]$ behaves a lot like a (total) trace.

Congruences: consider the equivalence relation on morphisms generated by some required equations, including

$$(f, U \otimes V) \approx (\text{Tr}^V[f], U)$$

when $\text{Tr}^V[f]$ is defined.

Then we can set $T(C) = D(C) / \approx$ in which $H[\cdot]$ induces a total trace, encompassing the original partial trace of C.
We can embed C in $T(C)$ by setting $E_C(f) = (f, 1)$.

Is it really an embedding? We check that $(f, 1) \approx (g, 1)$ implies $f = g$. Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property: we can close the diagram

\[
\begin{array}{c}
\text{C} \\
\downarrow \\
\text{T(C)} \\
\downarrow \\
\text{D} \\
\downarrow \\
\text{E} \\
\downarrow \\
\text{C} \\
\end{array}
\]

by setting $G(f, U) =
\text{Tr}_F U \left[F f \right]$.

(well defined because $(f, U) \approx (g, V)$ implies $\text{Tr}_F U \left[F f \right] = \text{Tr}_F V \left[F g \right]$).

\[
8/9
\]
We can embed C in $T(C)$ by setting $E_C(f) = (f, 1)$. Is it really an embedding?
We can embed \(C \) in \(T(C) \) by setting \(E_C(f) = (f, 1) \).

Is it really an embedding? We check that \((f, 1) \approx (g, 1)\) implies \(f = g \).
We can embed \mathcal{C} in $T(\mathcal{C})$ by setting $E_{\mathcal{C}}(f) = (f, 1)$.

Is it really an embedding? We check that $(f, 1) \approx (g, 1)$ implies $f = g$.

Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.
We can embed \(C \) in \(T(C) \) by setting \(E_C(f) = (f, 1) \).

Is it really an embedding? We check that \((f, 1) \approx (g, 1)\) implies \(f = g\). Because \(\approx \) is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property:
We can embed \mathcal{C} in $\mathbf{T}(\mathcal{C})$ by setting $E_{\mathcal{C}}(f) = (f, 1)$.

Is it really an embedding? We check that $(f, 1) \approx (g, 1)$ implies $f = g$.

Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property: we can close the diagram

\[
\begin{array}{ccc}
\mathcal{C} & \overset{E_{\mathcal{C}}}{\longrightarrow} & \mathbf{T}(\mathcal{C}) \\
\Big\downarrow & & \Big\downarrow \\
\mathcal{D} & \overset{F}{\longrightarrow} & \\
\end{array}
\]
The proof (III): a sketch

We can embed C in $T(C)$ by setting $E_C(f) = (f, 1)$.

Is it really an embedding? We check that $(f, 1) \approx (g, 1)$ implies $f = g$.

Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property: we can close the diagram

by setting $G(f, U) = \text{Tr}^{F\mathcal{U}}[Ff]$.
The proof (III): a sketch

We can embed C in $\text{T}(C)$ by setting $E_C(f) = (f, 1)$.

Is it really an embedding? We check that $(f, 1) \approx (g, 1)$ implies $f = g$. Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property: we can close the diagram

\[
\begin{array}{ccc}
 C & \xrightarrow{E_C} & \text{T}(C) \\
 & \searrow F & \downarrow G \\
 & \text{D} & \\
\end{array}
\]

by setting $G(f, U) = \text{Tr}^F_U[Ff]$.

(well defined because $(f, U) \approx (g, V)$ implies $\text{Tr}^F_U(Ff) = \text{Tr}^F_V(Fg)$)

Easier proof of an already known result: the representation theorem for partially traced categories.
Conclusion

Easier proof of an already known result: the representation theorem for partially traced categories.

Allows intuitive diagrammatic reasoning also in the partially-defined case.
Easier proof of an already known result: the representation theorem for partially traced categories.

Allows intuitive diagrammatic reasoning also in the partially-defined case.

A question: how do the constructions of both proofs relate?
Easier proof of an already known result: the representation theorem for partially traced categories.

Allows intuitive diagrammatic reasoning also in the partially-defined case.

A question: how do the constructions of both proofs relate?

Another: can the setting be tweaked to account for partial traces of infinite-dimensional Hilbert spaces and \mathbb{C}^*-algebras?
Easier proof of an already known result: the representation theorem for partially traced categories.

Allows intuitive diagrammatic reasoning also in the partially-defined case.

A question: how do the constructions of both proofs relate?

Another: can the setting be tweaked to account for partial traces of infinite-dimensional Hilbert spaces and \mathbb{C}^*-algebras?

... Thank you for your attention